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ABSTRACT

Pneumatic active control of asymmetric vortical flows

around slender pointed forebody is investigated using the
three-dimensional solution of the compressible thin-layer

Navier-Stokes equations. The computational applications
cover the normal and tangential injection control of asym-
metric flows around a 5*-semi-apex angle cone at 40*

angle of attack, 1.4 freestream Mach number and 6x106
freestream Reynolds number (based on the cone length).

The effective tangential-angle range of 67.5 ° -- -67.5*
is used for both normal and tangential ports of injec-

tion. The effective axial length of injection is varied
from 0.1 to 0.26 and the maximum mass-flow rate is var-

ied from 0.03 to 0.05. The computational solver uses the
implicit, upwind, flux-difference splitting finite-volume
scheme and the grid consists of 161x55x65 points in the

wrap-around, normal and axial directions, respectively.
The results show that tangential injection is more effec-

tive than normal injection

INTRODUCTION

The problem of asymmetric flow around slender bod-
ies and wings in the high angle-of-attack range is of vital

importance to the dynamic stability and controllability of
missiles and fighter aircraft. The onset of flow asymme-

try occurs when the relative incidence (ratio of the angle
of attack to nose semi-apex angle) of pointed forebodies
exceeds certain critical values. In addition to the rela-

tive incidence as one of the influential parameters for the

onset of flow asymmetry, the freestream Mach number,
Reynolds number and the shape of the body cross sec-
tional area are also influential parameters. The flow asym-

metry develops due to absolute or convected disturbances.
Passive control of flow asymmetry can be achieved by

using vertical fins along the leeward plane of geometric
symmetry 1'2, side-strakes near the body nose 3-6, rotatable

forebody tips which have variable cross sections 7 and
boundary-layer trips on the windward side of the fore-

body surface? However, passive-control methods have
limited effectiveness at very high angles of attack and are

incapable of providing adaptive control capability.
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Various active-control methods have been used either

to eliminate forebody vortex asymmetry and the corre-
sponding side force and yawing moment, or to provide
additional controlled forces and moments to rapidly ma-

neuver modern fighter aircraft. The focus of the present
paper is on active-control methods that eliminate or alle-

viate forebody vortex asymmetry and the corresponding
adverse aerodynamic loads. Active-Control methods in-

clude blowing and suction, spinning and rotatory oscilla-
tion and surface heating; among others. The effectiveness

of normal blowing was investigated by Peake et. al 9' m,
Almosnino and Rom II and Kandii et aln. The effective-

ness of tangential blowing was investigated by Wood et
all3, 14 and Kandil et al t2. Active control of asymmetric

flows around slender pointed bodies using spinning and

rotatory oscillations of the body, body nose tip or a band
of the body has been investigated by Kruse 15, Fidler t6,
Contanceau and M6nard 17, Taneda l_ and Kandii et a119.

Research work on using normal and tangential blow-
ing to produce side forces and yawing moments to rapidly

maneuver modern fighter aircraft was recently conducted
by Tavella and Schiff 2°, Murman et a121, Kramer et a122
and Celik 23. An extensive review of the literature of ac-

tive control methods can be found in the Ph.D. disserta-
tion of Sharaf El-Din 24.

In the present paper, Computational research work

is focussed on the injection active control of three-
dimensional asymmetric flow around a pointed-nose cone

representing a forebody. By using the effective tangential
angle range of injection of 67.5 °-.-* -67.5* of Ref. 19,

by the present authors, the effective axial length of in-
jection (measured from the body nose) and the maximum
mass-flow rate of injection are considered. Both normal

and tangential injection are investigated.

FORMULATION AND
COMPUTATIONAL SCHEME

Thin-layer Navier.Stokes Equations

The conservative form of the dimensionless, un-

steady, compressible, thin-layer Navier-Stokes equations
in terms of time-independent, body-conformed coordi-
nates _1_2, and _ is given by

& c9_" a_2



where

_" = _m(z_, z2, X3)

- - "_[?,pul, pu_, ?u3, pe]

F,m - inviscid flux

J

½[Or.,= pulU,, + 01('_p, pu2U,_

m U+ Off p, p 3u,. + Off'_p,(pc + p)u,.]'

(2)

(3)

(4)

(_")2 -= viscous and heat-conduction flux in £2 direction

1 2
= _ [0,ok_m, Ok_2rk2,Ok_r*3,Ok_2(",,_'_-- q,)]'(S)

U.. = O,_"u, (6)

The first element of the three momentum elements of Eq.
(5) is given by

(Ok_2rk] = M,o......_p__bO]_ + (7)
Re 0_ ]

where

1 _Ou_
= 0k_20k_2, ¢ = :0k_ (8)
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The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
Eq. (7), with 2 and 3, respectively. The last element of
Eq. (5) is given by

(9)

Ok_2(u.r_. - q,) - Re q:W

1 0 I O(a2) ]

where

W = 0._%.. (10)

The reference parameters for the dimensionless form of

the equations are L, aoo, L/a,o, p_ and /z_ for the

length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re
= PooVooL/lzoo, and the pressure, p, is related to the

total energy per unit mass, e, and density, p, by the gas
equation

1

p = (7-1)p(e - _u.u.). (II)

The viscosity, p, is calculated from the Sutherland law

= TalZ (_..._),1+ C C = 0.4317, (12)

and the Fh'andtl number Pr = 0.72.

In equations (1)-(1 I), the indicial notation is used for
convenience. The subscripts k and n are summation in-

dices, the superscript or subscript s is a summation index
and the superscript or subscript rn is a free index. The

range ofk, n,s and m is 1-3, and Ok = O/Ozt. In equa-

tions (1)-(12), u. is the Cartesian velocity component,
U_ the contravariant velocity component, r,. the Carte-

sian component of the shear stress tensor, qk the Canesi;m

component of heat flux vector, a the local speed of sound
and M_ the freestream Math number.

Boundary and Initial Conditions

The boundary conditions are explicitly satisfied, fin
general, they include inflow-outflow conditions and solid-

boundary conditions. For problems of flow asymmetry.,

where the flow is solved throughout the whole computa-
tional domain, periodic boundary conditions are used at

the plane of geometric symmetry of the body.

For the asymmetric flow problems around slender

bodies and for supersonic inflow-outflow boundary, the
Riemann-invariant boundary conditions are used. They
require that the inflow variables be at the freestream con-

ditions, and the conical shock enclosing the body be cap-
tured as pan of the solution. For supersonic outflow
boundary, the Riemann-invariant boundary conditions re-

quire that all flow variables be extrapolated from the in-

terior cells. On the solid boundary, without injection,
the no-slip and no-penetration conditions are enforced.

Moreover, the zero normal-pressure gradient and adia-

batic boundary condition are enforced. For the present
active control problems, the mass-flow rate is specified
at the body surface for the normal injection control. F_r

the tangential injection control, the mass-flow rate and
tangential velocity are specified.

The initial conditions correspond to the uniform flow

conditions with u_ = u2 = u3 = 0 on the solid boundar/.

These conditions are used to obtain the asymmetric flow
solution. Next, the flow control conditions are enforced

and the previously obtained asymmetric solution is used

for the initial conditions of the active control problem.

Computational Scheme

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compres_;-

ible, thin-layer Navier-Stokes equations. The scheme uses
the flux-difference splitting scheme of Roe which is based

on the solution of the approximate Riemann problem. In
the Roe scheme, the inviscid flux difference at the i_-

terface of computational cells is split into two parts; left
and right flux differences. The splitting is accomplished

according to the signs of the eigenvalues of the Roe
averaged-Jacobian matrix of the inviscid fluxes at the cell
interface. The rain-rood flux limiter is used to eliminate

oscillations at locations of large flow gradients. The vi._,-

cous terms are differenced using a second-order accurate

central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in



the_1 _2 and _3 directions. The computational scheme

is coded in the computer program "FTNS3D" which is a
modified version of the "CFL3D" Code.

COMPUTATIONAL STUDY AND DISCUSSION

Flow Conditions and Grid:

For all the computational studies in this paper, a 5°

semi-apex angle circular cone, representing the forebody,
at 1.4 freestream Mach number and 6x106 freestream

Reynolds number (based on body length) is considered.

The grid consists 161x55x65 points in the wrap-around,
normal and axial directions, respectively. The grid is

generated with a modified Joukowski transformation in
the cross-flow planes with a minimum grid size of l0 "4

in the normal direction at the body surface. A geometric
series is used for grid clustering in the normal direction

and another geometric series is used for grid clustering
in the axial direction in the nose region. Figure 1 shows

a typical grid.

Asymmetric Flow Solution (No Control):

While the numerical disturbances (Machine round-off

error) were sufficient to simulate wind tunnel or real flight

disturbances in producing the asymmetry in the flowfield
for conical flow solutions 4, such disturbances are insuf-

ficient for the three-dimensional solution of thin-layer

Navier-Stokes equations since the three-dimensional so-

lution never reached to machine zero during the iterative
solution. The disturbance in the present case is applied

physically, such as a transient short-time side-slip distur-
bance. For the case under consideration, a side-slip dis-
turbance of l0 ° is applied for 300 iteration steps. Next,

the disturbance is removed and the asymmetry was per-
sistent.

In Fig. 2, the surface-pressure coefficient is shown at

several different axial stations along the cone length, and
Fig. 3 shows the total-pressure-loss contours at the same

axial stations. From these figures as well as Fig. 4, which

is a three-dimensional view of stagnation-pressure con-
tours at different axial stations, one can observe that the

flowfield is highly asymmetric. Also, it is observed that

the vortex asymmetric structure is changing sides with the
axial direction, and hence the corresponding side forces
are changing directions along the cone axis. Examin-

ing the figures at different axial stations, one concludes
that the asymmetry grows spatially in the axial direction.

This is in agreement with both experimental and compu-
tational results which relate the onset of asymmetry with

small disturbances starting at the body nose and growing
in the downstream direction. Since the solution is steady,

the vortex shedding is a spatial one.

The fact that the flow asymmetry is not one-side bi-
ased restricts the choice of the active control method.

Uniform mass injection would be of limited effectiveness

since either it will be applied in a symmetric or antisym-
metric way and either of the two methods will not be

effective along the cone length. Hence, a variable in-
jection mass-flow rate per unit area approach, similar to

the one used in the conical flow applications 19, is chosen.

The variable injection idea is based on sensing the pres-
sure difference between the corresponding points on the

right and left sides of the cone and applying a mass-flow
rate that is proportional to this difference. The maximum

mass-flow rate, rh,,,z, corresponds to the maximum of

all pressure differences between the corresponding points
on the right and left sides.

Normal Injection:

The reference case solution is used as initial condition

for the normal injection control under consideration, in

which l_if, is chosen to be 0.1. The effective angle of
the injection; Oef f extends from -67.5 ° to 67.5 o, where

O_H is measured from the leeward side of the geometric
plane of symmetry. The maximum mass-flow rate is 0.05.

Figures 5-7 show the surface-pressure coefficient at
different axial stations, the total-pressure-loss contours at

different axial stations and the stagnation-pressure con-
tours at different axial stations, respectively. Comparing
these figures with the corresponding figures of the ref-

erence case, it is observed that the asymmetry has been
eliminated on about 70% of the cone length, and signifi-

cantly reduced on the remaining 30% of the cone length.
It is also observed that both the surface-pressure coef-

ficient and the total-pressure loss-contours show small
regions of asymmetry that grow along the cone length.

These observations show that the level or area of injec-
tion used is insufficient to eliminate the asymmetry over

the entire cone length.

Next, the effective length of injection is increased to

lef/ = 0.15 while rhma_ is kept at 0.05. The results (not

shown) indicated that the flowfield became symmetric up
to 80% of the cone length only. Slight asymmetry was

observed on the remaining 20% of the cone length.

Increasing the effective length of injection to leff =
0.26 eliminates the flow asymmetry over the entire cone
length. The results of this case are shown in Figs. 8-10.

No asymmetry in the flowfield or the surface pressure can
be observed. To study the effect of the mass flow rate,

the previous case is repeated with rh,nat = 0.03 keeping

l_/f = 0.26. The results of this case were identical to the
previous case.

Tangential Injection:

The direction of the injection in this case is tangent

to the body surface towards the leeward plane of geomet-
ric symmetry. The initial conditions for this case is the

solution of the reference case of Figs. 2-4. The effec-
tive angle of injection is chosen to extend from -67.5 ° to

67.5 ° , and the maximum mass-flow rate per unit area is
taken to be 0.05, while the effective length of injection



is 0.1. The results of this case are shown in Figs. I 1-13.

The results show that the flow has recovered its symmetry
and there is no sign of any significant asymmeu'y. Com-

paring these results with the corresponding results for the
normal-injection case: Figs. 5-7, we conclude that tan-

gential injection control is more effective than normal-
injection control in eliminating the flow asymmetry and

the corresponding side force for the same flow conditions.

CONCLUDING REMARKS

The compressible thin-layer Navier-Stokes equations
have been solved to invesugate the effecUveness of the

active control using flow injection on a slender pointed
cone. First, flow asymmetry has been obtained around
the cone by inducing a short-time side-slip of 10O as a
transient flow disturbance. The disturbance is induced

for 300 iteration steps and then removed. Flow asym-

metry was persistent in the form of vortex asymmetric
structure which changed sides along the cone length and

showed spatial vortex shedding. Flow asymmetry was
not possible using disturbances in the form of machine
round-off error (as in the case of conical flows) since the

residual error never reached machine zero during the it-
erative solution. Once the asymmetric flow is obtained,

the injection control is applied using normal or tangential
flow injection. The effective injection angle, length and

maximum mass-flow rate are specified and the boundary
conditions are modified according to the type of injection
control; normal or tangential. The maximum mass-flow
rate is used for the maximum pressure difference between

the right and left sides of the cone. For the pressure dif-

ference between other corresponding points on the right

and left, a mass-flow rate which is proportional to this
difference is used. It has been shown that the tangential
injection control is more effective than the normal injec-

tion control for the same flow conditions. In the present
study, the cone angle of attack is kept fixed at 40 ° and no
additional flow cases have been investigated due to the
limitation on the computational resources.
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Fig. 1. A typical three-dimensional grid around the cone, 161x55x65.
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ABSTRACT

The muitidisciplinary interaction of the aerodynam-
ics and rigid-body dynamics between a single tip vor-

tex (representing a 747 generator wing) and a trailing
wing (representing a 747 follower wing) is computation-
ally investigated. The three-dimensional computational
model consists of a tip vortex with prescribed location

and flow profiles at the inlet boundary of the computa-
tional domain, and a 747 follower wing with prescribed
location relative to the generator tip vortex and prescribed

mass-moment of inertia around the wing axis of symme-

try. Keeping the follower wing stationary, the problem
is solved for the flowfield using the Reynolds-averaged,
Navier-Stokes (NS) equations. With this solution serving
as initial conditions, the follower wing is released to roll

under the effect of the rolling moment induced by the

generator tip vortex. At each time step, the NS equations
and the dynamics equation for roiling motion are solved
sequentially for the flowfieid, the rolling moment and the
follower-wing rolling motion. The computational grid is

allowed to roll according to the wing rolling motion. The
problem is solved for laminar and turbulent flows using

coarse and fine grids.

INTRODUCTION

Since the introduction of wide-body and jumbo jets
for civil air transport in the early 70's, the problem of haz-

ardous effect of wake vortices trailing behind these air-
craft on follower aircraft has received significant research
efforts. The vortex trails are characterized with high in-

tensity and turbulence, and may produce high rolling mo-
ments on follower aircraft which could exceed its avail-
able roll control. Moreover, the follower aircraft, de-

pending on its location with respect to these vortex trails,
could suffer a loss of altitude or climb rate in addition

to structural damages. These vortex trails may persist up

to several miles and for long-periods-of-time-before-tl_ir

decay, and therefore they play a major role in sequencing

• Professor, Eminent Schola_ and Department Chairman, Associate
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Copyright © 1994 by Osama A Kandil Published by the American
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landing and take-off operations at busy airports. For ex-
ample, a minimum safe-separation distance between air-

craft need to be specified which depends on the vortex.

intensity, wind shear, atmospheric turbulence and tem-

perature gradient; among others.

The literature shows a few experimental and compu-

tational investigations that attempt to study and analyze
vortex-wake flow interaction, merging, decay and its haz-
ardous effects on follower aircraR. Haliock and Eberle _

presented a review of the state of the art of aircraft wake
vortices covering the research efforts in the United States
until the mid-seventies. Experimental wind tunnel and

airport measurements of the vortex-wake flow were con-
ducted by Dee and Nicholas 2, Harvey and Perry 3, El-

Rarely 4, Wood and McWilliams s, Gardoz 6, Cliffone and
Lonzo _, and Olwi and Ghazi s.

Mathematical models and computational schemes

were developed using inviscid analysis by Chorin and
Bernard 9, Hacket and Evans I°, Yates I1, iversen and

Bernstein t2, and Rossow 13. Although an inviscid model
cannot describe the wake aging including its diffusion, it

is still capable of producing the wake shape and its dy-
namics. The mathematical models used in the above ref-

erences were based on the use of the point vortex method

to compute the motion of a finite number of point vortices
which model the vorticity behind a wing. The first three-
dimensional inviscid model was introduced by Kandil,

et. a114, where the nonlinear vortex-lattice method, which
was also developed by Kandil, et. al 1_, was used to com-

pute the interference flow between wings and the vortex-
wake 'flows and the resulting hazardous effects.

Viscous modeling of trailing vortices was first in-
troduced by McCormick, et. a1.6. Viscous interactions
of vortex wakes and the effects of background turbu-

lence, wind shear and ground on two-dimensional vor-
tex pairs were presented by Bilanin, et. a117As. Liu and
his co-workers 19--_1studied the interaction, merging and

decay of vortices in two-dimensional space and of three-
dimensional vortex filaments. For the two-dimensional

flow simulation, the incompressible Navier-Stokes equa-

tions, expressed in terms of vorticity-stream function for-
mulation, were used. For the three-dimensional flow sim-

ulation, the incompressible Navier-Stokes equations, ex-

pressed in terms of the vorticity-veiocity vector potential
formulation, were used. An extensive review of this work



is given in Ref. 22• To estimate the effects of density

stratification, turbulence and Reynolds number on vor-

tex wakes, an approximate model was recently developed
by Greene 23. Later on, Greene and his co-workers 24 pre-
sented selected results of aircraft vortices which include a

juncture vortex, a lifting-wing vortex and a wake vortex.

In a recent paper _ by the present authors, the

unsteady, compressible, thin-layer, Reynolds-averaged,

Navier-Stokes equations were used to compute and ana-
lyze vortex-wake flows of isolated and interacting wings.

A C-O grid was used to carry out the computations with
a computational domain that extends 15 chords behind

the leading wing. The emphasis of the paper was to
study the effects of the near-wake vortex flow on a small

follower wing for two vortex-wake interference cases.
The first flow-interference case was called the "along-

track penetration through vortex center" and the second
flow-interference case was called the "along-track pene-

tration between vortices." The computations showed that
the first-interference case was much more hazardous to

the follower wing in comparison with the second tl_w-
intereference case. It was demonstrated that the follower

wing experienced large rolling moments if the follower

wing is along-track penetration through vortex center. For
the second flow-interference case, it was demonstrated

that the follower wing experienced a loss of lifting force.

In a later paper by Wong, gamdil and Liu 26, the

wake-vortex flows of the wing considered in Ref. 25
were recomputed using fine grids and thin-layer and full

Navier-Stokes equations. The flux limiter in the solver
was turned on and off to study its numerical diffusive
effect. It has been shown that the solution obtained

using the full Navier-Stokes equations without flux limiter

gives the least numerically-diffused tip-vortex core in
comparison with the other solutions. However, the tip-

vortex core diffused rapidly beyond the trailing edge.
This result calls for more accurate computation of the
tip-vortex core to minimize the numerical diffusion.

In the present paper, the multidisplinary interaction
of a tip vortex (representing a 747 generator wing) and
a 747 trailing wing (representing the follower wing) is

studied. The follower wing is initially set at zero angle
of at'tack and held stationary. The flowfield is obtained

using the solution of the NS equations, and the initial

rolling moment induced by the generator tip vortex on
the follower wing is computed• The follower wing is

then released from rest and both the NS equations and
the dynamics equation of rolling motion are sequentially

solved at each time step• The response of the follower
wing and its interaction with the generator tip vortex are

obtained. The problem is solved for laminar and turbulent
flows using coarse and fine grids.

FORMULATION

Fluid Flow Equations:

The vector form of the governing equations is de-

veloped in terms of an inertial frame of reference, and

hence there are no source terms on the right-hand side of

the equations. Hence, the components of the flow-fietd
- t

vector [p, pV,pe] are absolute quantities. This is un-

like the earlier development of the governing equations
by the principal author of this paper (Ref• 27), where die

equations are developed in terms of a non-inertial frame
of reference (translating and rotation frame of refereno:)

and source terms appear on the right-hand side of the
equations.

The conservative form of the dimensionless, un-

steady, compressible, full NS equations in terms of tim°;-
dependent, body-conformed coordinates _1,_. and _3 is

given by

& o_m o_,

where

=O;m =1-3. s=1-3 (1)

(2)

Q=j - = _'Lo,pul,,ou_,pu3,.oe] (3)

E., - inviscid flux in _" direction

= - OW_k,k + 0
J

1
= -- pUre, pulUm + Ol_mp, pu_.U_

J

+ O_.("p, pu3U.. + oa_mp, (pe + p)U..

OC" ] _Ot p (4)

(L'_), _----viscous and heat---conduction flux in _"

direction
$ $ $

= 7[0, 0k_ rk_,0k_ rt_, 0d r_3,

Ok('(u.rk.--q_)]'; k=l-3, n=l-3 (:;)

0(" (¢;)
U. = Ok_'uk + 0-7"

and a-°--_aa_-7 is the grid speed. The three momentum elemen:s

of Eq. (5) are given by

MooP [ ( Ok,. O,,. 2 . . \ Ou,- Ok_'r*i Re

, .Oujl



The last element of Eq. (5) is given by

M_#[(Off,'Op_,"Ot('(upr_p- qt) = Re

_ 2 0_, 0kC ,3) Ou, _ ,., _ ,.. Ou,

1 0,0(aD1
+ ('r- 1)z ;v = l-3 (s)

The reference parameters for the dimensionless form
of the equations are L,aoo, L/aoo,po_ and #oo for the

length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re =

pool/_L/#oo, where L is the wing root-chord length. The

pressure, p, is related to the total energy per unit mass,
e, and density, p, by the gas equation

P=(7-1)p_e--_UnU,).
(9)

The viscosity, g, is calculated from the Sutherland law

-3,2/1 +C\
"= Cr--;-e)' c=04317, (,0)

and the Prandtl number Pr -- 0.72.

In Eqs. (!)-(10), the indicial notation is used for con-
venience. The subscripts j, k and n are summation in-

dices, the superscript or subscript s is a summation index
and the superscript or subscript m is a free index. The
range of j, k. n, s and m is 1-3, and 0t ---- 0/0zt. In

Eqs. ( 1)-(I 0), u, is the Cartesian velocity component, U,,
the contravariant velocity component, r, the Cartesian

component of the shear stress tensor, q, the Cartesian

component of heat flux vector, a the local speed of sound
and Mo¢ the free-stream Math number.

Turbulent Flow:

For the turbulent flow, the Navier-Stokes equations
are transformed to the Reynolds-averaged equations by

replacing the coefficient of molecular viscosity, #, and
the coefficient of thermal conductivity, k, with

_, = _ + #, = _(1 + #,1_) (11)

@( e e--" (,2)k,=k+k,= 1+ #p_,,I

where #, is the effective viscosity, k, the effective ther-
mal conductivity, #t the turbulent viscosity, P, the lam-
inar Prandtl number, P,,t the-turb_lent-Prandtt--number

and Cp the specific heat under constant pressure. The
turbulent viscosity #t is obtained by using the two-layer

algebraic eddy viscosity model which was first developed
by Cebeci -_s for the boundary-layer equations and modi-

fied later by Baldwin and Lomax -'9 for the Navier-Stokes

equations. The details of the turbulent model are given
in Ref. (30) by Wong, Kandil and Liu.

Dynamics Equation of Rolling Motion:

The Euler equation of rigid-body dynamics for rolling

motion of the follower wing is given by

I_0 = M_ (13)

where I_: is the mass-moment of inertia of the follower

wing around its axis, 0 the roll angle (positive when
measured in the counter-clockwise direction looking in

the upstream direction), and .M: the net aerodynamic

rolling moment which includes the moment induced by
the generator tip vortex and the aerodynamic damping-
in-roll moment.

Boundary and Initial Conditions

and Grid Motion:

Boundary conditions are explicitly implemented.
They include inflow-outflow conditions and solid-
boundary conditions. At the inflow boundaries, the tip
vortex profiles are prescribed and the Riemarm-invariant

boundary-type conditions are enforced. At the outflow
boundaries, the Riemann-invariant boundary type condi-
tions are also used.

Since the wing is undergoing a rolling motion, the

grid is moved with the same angular motion as that of
the wing. The grid speed, °o--_, and the metric coetficient,

, are computed at each time step of the computational
scheme. Consequently, the kinematical boundary condi-
tions at the inflow-outflow boundaries and at the wing

surface are expressed in terms of the relative velocities.
For the dynamical boundary condition, _ at the wing

surface is no longer equal to zero. This condition for the
present rolling wing is modified as

0p
[ =-p&,,,.h = --p(_ x _ x F+_ x F).h (14)

Wing

where _ is the acceleration of a point on the wing
surface, h the unit normal to the wing surface, _ the

position vector from the point to the roll axis and

acceleration of rolling motion. Finally, the boundary con-
dition for the temperature is obtained from the adiabatic

boundary condition, ar_lw, ng = 0.

The initial conditions correspond to the flow solution
around the stationary follower wing.

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-

ible, Reynolds-averaged Navier-Stokes equations. The
-scheme uses the flux-difference splitting of Roe. The
viscous- and heat-flux terms are linearized in time and

the cross-derivative terms are eliminated in the implicit

operator and retained in the explicit terms. The viscous



terms are differenced using second-order accurate cen-

tral differencing. The resulting difference equation is ap-

proximately factored and is solved in three sweeps in
the _1_2 and _3 directions. The computational scheme

is coded in the computer program "FTNS3D". For the

dynamics equation of rolling motion, a four-stage Runge-

Kutta scheme is used to integrate the equation to obtain
0 and0.

The method of solutionconsistsof two steps. In

the firststep,the problem is solved while the wing is

kept stationary.The NS equationsare used toobtainthe

flowfieldand therollingmoment inducedby thegenerator

tipvortexon the followerwing. Using thissolutionas

initialconditionsforthe second step,the followerwing

is releasedfrom restand both the dynamics equation

of rollingmotion and the NS equationsare integrated

sequentiallyateach time step thereaRer.At each time

step,the wing and the grid are rotatedaccordingto _e

computed rollangle,and the metric coefficientsof the

coordinatesand the gridspeed are computed.

COMPUTATIONAL RESULTS

Computational Model:

For the follower wing, a 747-Boeing wing (without a
dihedral angle) of aspect ratio of 6.3 is considered. The

wing angle of attack is zero and the freestream Mach

number is 0.3. For the laminar flow, the Reynolds num-
ber is 0. I x 106 and for the turbulent flow, the Reynolds
number is I× 106. Two C-O grids are used; a coarse grid
of 97x33x65 (Fig. I) and a fine grid of 149x49x97 in

the wrap-around axial, normal and wrap-around spanwise
directions, respectively. The inflow boundary is located
at two wing root-chord lengths from the follower wing
vertex. The center of the generator tip vortex is located

at 1/4 chord length above the follower wing on its plane

of geometric symmetry. The other boundaries of the com-
putational domain are located at a distance of 10 chord

length. At the inflow boundary, the generator tip vortex
has a tangential velocity profile given by

t'# -- ltl_k_ 1 - exp - (15)
r

where ._f_ is the freestream Mach number, Vs is the tan-

gential velocity at some radial distance, r. The constants

k, and r,, define the swirl ratio, 8, which is the ratio

between the maximum tangential velocity and the axial

veloci_' at the inflow boundary, and its radial position
(e.g. for rm = 0.2 and k, = 0.1, B = 0.32 is at r = 0.224).

Looking in the upstream direction, the sense of rotatio n
of the generator tip vortex is in the counter-clockwise

direction. The radial velocity is set to zero. The corre-

sponding pressure profile is obtained by integrating the
inviscid radial momentumequation, and the density, p, is

then found from the definition of the speed of sound. The

resulting profiles represent a compatible set for the gen-
erator tip vortex. Figure 2 shows the compatible profiles

of the generator tip vortex.

Laminar Fiow-Cearse Grid:

Figures 3-5 show the results for the laminar-flow so-

lution for a Reynolds number of 0.1 x 106 on a coar_.e

grid at the t = 0 (initial conditions). In Fig. 3, the total-
pressure-coetficient (CPT) contours are shown at cros;-

flow planes passing through the follower wing and the

generator tip vortex. Looking in the downstream direc-

tion, the sense of rotation of the generator tip vortex is in
the clockwise direction. The boundary-layer flow in tl'e

spanwise direction on the upper left side of the follower

wing experiences separation, and that on the lower right

side of the follower wing experiences separation also.
The tip vortex on the left side of the follower wing _s
much smaller than its tip vortex on the right side. Figme

4 shows the upper and lower surface pressure-coefficiem
(CP) contours of the follower wing. The adverse pressure

gradientsinthespanwisedirectionson theupper leftside

and the lower rightside are clearlynoticed. Figure 5

shows the CPT contoursincross-flowplaneslookingin

the upstream direction(senseof the generatortipvo)--

rex isinthe counter-clockwisedirection).The separated

boundary-layerflows on the upper and lower surfaces

are clearlynoticed.The core of the generatortipvortex

moves tothe left(lookingdownstream) and closertothe

wing upper surface,asitadvancesinthedownstream d_-

rection.Moreover, itbecomes tighterdownstream than

itssizeupsuv,am. These resultsclearlyshow the aero-

dynamic interferenceeffectson the generatortipvortez

and the boundary-layerflow of the followerwing. T_-

ble l givesthe valuesof lift,drag and rolling-momer_t
coefficientfor t = 0.

Next, the followerwing isreleasedfrom restwith

0o = 0o = 0 and is allowed to roll under the initially ir-
duced rolling moment of the generator tip vortex. Figures
6-8 show a snapshot of the results at t = !0. Figure 6

shows that the separated boundary-layer flow on the up-

per left side is larger than that at t = 0, and the sepm-ated
boundary-layer flow on the lower right side is smaller
than that at t = 0. The tip vortex on the left side is

on the lower surface and the tip vortex on the right side
decreases in size in comparison with its size at t = 0. Fig-
ure 7 shows the upper and lower CP contours which show

the locations of the separated flow on the upper and lower
left side of the follower wing. Figure 8 shows the CP'f

contours in cross-flow planes looking in the upstream di-

rection. It is clearly noticed that the vortex core of the
generator tip vortex becomes tighter as it advances in the
downstream direction. It also moves to the left side of the

follower wing and closer to its upper surface. The sepa-
---rated-boundm=y-layer-flowon the upper left side and the

tip vortex on the lower left side are clearly seen at x = 1.9.
At this time level, t = 10, the follower wing rolled 5.7° i_

the clockwise direction looking in the downstream direc-
tion. During the course of the accu?ate time stepping, _t

was noticed that the follower-wing flow is strongly time

dependent with frequent vortex shedding at the right ti3
of the wing. Figure 9 shows the variations of the roilin _,



moment, Mz, the roll angle, 0, the roll rate, 0, and the

roll acceleration, 0. The M, and 0 decreases oscillatorly
with time and 0 and 0 increases with time. Eventually,

M= and 0 reach to zero and 0 reaches a constant value
while 0 continues to grow. Table 1 shows that the lift and

rolling-moment coefficients decrease substantially and the

drag coefficient decreases slightly.

The rolling moment Mz has been fitted using analytic

functions representing the restoring moment (Mr) and the

damping-in-roll moment (Ma). It is represented as

Mz = Mr + Md (16)

where
M, = alO + a303 + asO0 _" (17)

Afd = a_.O+ a4020 + a60 _ (18)

Figure 10 shows the variation of the Mz and its fitted
function with time and the variations of the restoring and

damping-in-roll moments with time. It is seen that M,

is positive and Md is negative with Mr > IMsl. The
difference between Mr and Ms vanishes as t increases

until ?,1_ becomes 0. Thereafter, the wing rotates with
a constant rate.

Turbulent Flow-Coarse Grid:

Figures 11-12 and 13-17 show the results for the
turbulent-flow solution for a Reynolds number of I x 10 6

(using the Baldwin and Lomax model) with a coarse grid
for t = 0 and t = 10, respectively. At t = 0, it is no-

ticed that the boundary-layer separations on the follower

wing vanished in comparison with those of the laminar-
flow solution. Figure I1 shows higher suction pressures
on the upper surface of the follower wing than those of
the laminar-flow solution. At x = 1.1 and 1.9, Fig. 12
shows that the boundary-layer separations vanished due

to the large flow momentum of the turbulent flow. At
t = 10, Fig. 13 shows that the boundary-layer separation

on the upper left side of the follower wing occurs. It is
not as strong as that of the laminar-flow solution. The

tip vortex on the right side of the follower wing disap-
peared and the one on the left side is smaller in com-

parison with that of the laminar flow. The locations and
sizes of the core of the generator tip vortex (Fig. 15) are
similar to those of the laminar flow. Figure 16 shows
_'tfz. O, 0 and 0 variations with time up to t = 10. It

is noticed that AI, and 0 decrease aperiodically and both

0 and 0 increase. The rolling moment and acceleration
reach close to zero, while 0_ teaches.a.constant_value of

0.95 and 0 reaches a value of 6.7". This roll angle is larger
than the one obtained for the laminar-flow solution. Fig-

ure 17 shows the variations of Mz and its fitted function,
M, and Ma with time. Both Mr and Ms of the turbulent

flow are higher than those of the laminar flow. Table !
shows the lift, drag and rolling-moment coefficients for

the follower wing with and without a generator tip vortex.

The generator tip vortex decreases the lift and drag coef-
ficients. The rolling of the follower wing slightly reduces
the lift coefficient and substantially increases the drag co-

efficient. The lift coefficient is substantially higher than

that of the laminar flow while the drag coefficient is sub-

stantially lower than that of the laminar flow, particularly

as the wing is rolling.

Turbulent Flow-Fine Grid:

The grid is refined in the three directions, and the

problem is solved for the turbulent flow with a Reynolds
number of lx 106 . Figures 18-20 show the results at
the time level t = 10. The fine-grid results show more

resolution in the boundary-layer flow on the follower

wing and. more resolution in the core of the generator

tip vortex, than those of the turbulent flow solution with
a coa.rs,e grid. At t = 10, Fig. 21 shows slightly higher roll
rate, 0, and slightly higher roll angle, 0, than those of the
turbulent-flow solution with a coarse grid. It also shows

slightly lower rolling moment and roll acceleration than
those of the coarse-grid solution. Table 1 shows slightly
lower lift coefficients at t = 0 and t = 10 than those of the

coarse-grid solution. It also shows substantially lower

drag coefficients at t ffi 0 and t = 10 than those of the
coarse-grid solution.

CONCLUDING REMARKS

The multidisciplinary interaction which includes the
aerodynamics and rigid-body dynamics of a 747-Boeing

follower wing and a generator tip vortex is investigated in
the present paper. The problem is solved using two sets

of equations which include the unsteady, compressible,
Reynolds-averaged NS equations and the dynamics equa-
tion of rolling motion. The problem is solved for laminar
and turbulent flows using coarse and fine grids. The tur-
bulent model is the modified Baldwin and Lomax model.

The NS equations are solved using the implicit, upwind,

flux-difference splitting, finite-volume scheme and the dy-
namic equation is solved using a four-stage Runge-Kurta
scheme. The initial conditions for the rolling-wing prob-

lem are obtained by solving for the flowfield with the

wing kept stationary. The profiles of the generator tip

vortex are prescribed at the inflow boundary of the com-
putational domain. Having obtained the initial conditions,
the follower wing is released from rest to roll under the

effect of the induced rolling moment of the generator vor-
tex. At each time step of the solution, the NS equations
are used to obtain the flowfield and the rolling moment on

the follower wing, the dynamics equation of.rolling mo-
tion is used to obtain the motion (0, 0 and 0), the com-

putational grid is allowed to roll according to the wing
roll angle, and the metric coefficients of the coordinates

1and the grid speed are calculated..

The laminar flow solution showed initial flow sepa-

rations on the upper and lower surfaces of the follower
wing. As the wing rolls, the flow separation on the upper



surface increased and vortex shedding from the wing tip

develops. The flow is substantially unsteady with oscil-
latory decaying liR and rolling-moment coefficients. The

turbulent flow solution shows substantially smaller initial

flow separation, in comparison with the laminar solution,

on the follower wing. As the wing rolls, the flow sep-

aration increases on the upper surface of the wing. The
lift coefficients at the initial time and during the wing

rolling motion are substantially higher than those of the
laminar solution. The decay of the lift coefficient is not

as substantial as that of the laminar case. The decay

of the rolling-moment coefficient and the wing accelera-
tion are aperiodic and approach zero while the roll rate

Table I. LiR, Drag and

Laminar Flow-Coarse Grid

C!

t = 0 0.048004

t = 10 0.017775

t = 20 -0.007207

Re

reaches a constant value and the roll angle increases. For
the same time level, the turbulent-flow solution shows

higher roll angle than that of the laminar-flow solutiol.

The turbulent-flow solution with a fine grid shows mo_e

resolutions of the boundary-layer flow and the generator

tip vortex. It shows slightly higher roll angle and roll

rate than those of the coarse-grid solution. It also shows

slightly lower lift coefficient and substantially lower dr_g
coefficient than those of the coarse-grid solution. It is also
concluded from the results of the laminar- and turbulent-

flow solutions for the generator tip vortex that the Bahl-
win and Lomax turbulent model is inadequate for t[,e

generator tip vortex.

Rolling-Moment Coefficient

= l.e5 (97x33x65)

Cd Cmx

0.014941 0.021202

0.014775 0.0069693

0.015429 0.0014347

Turbulent Flow-Coarse Grid

Cl

No Vortex 0.14338

t= 0 0.12961

t = I0 0.12579

t = 20 0.I 1984

Turbulent Flow-Fine Grid

CI

t = 0 0.12141

t = 10 0.11838

Re -- l.e6 (97x33x65)

Cd Cmx

0.013 0.

0.0049181 0.033690

0.0077610 0.0017480

0.0076206 -0.808e-4

Re=l.e6 (149x49x97)

Cd Cmx

0.0021379 0.035289

0.0055305 0.0014577
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Fig. 3 CPT-contours at cross-flow planes of the follower wing and generator tip vortex, laminar
flow, coarse grid, t = O.
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Fig. 6 CPT-contours at cross-flow planes of the follower wing and generator tip vortex, laminar
flow, coarse grid, t = 10.
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Fig. 12 CPT-contours in cross-flow planes of the follower wing and generator tip vortex,

turbulent flow, coarse grid, t = 0.
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Fig. 13 CPT-contours at cross-flow planes of the follower wing and generator tip vortex,

turbulent flow, coarse grid, t = 10.
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Fig. 18 CPT-contours at cross-flow planes of the follower wing and generator tip vortex,

turbulent flow, fine grid (149x49x97), t = 10.
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ABSTRACT

Prediction of both the near- and far-field vortex-wake turbulent flows are presented. The

Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind Roe-flux-

differencing scheme. The turbulence models of Baldwin and Lomax, one-equation model of Spalart

and Allmaras and two-equation shear stress transport model of Menter are implemented with the
NS solver for turbulent-flow calculation. For the near-field study, computations are carried out

on a fine grid for a rectangular wing with a NACA-0012 airfoil section and a rounded tip. The

wing has an aspect ratio of 1.5 and is mounted inside a wind tunnel at an angle of attack of 10%
The focus of study is the tip-vortex development, the near vortex wake roll-up, and validating the

results with the available experimental data. For the far-field study, the computations of vortex-

wake interaction with the exhaust plume of a single engine are carried out using overlapping zonal

method for a long distance downstream of a Boeing 727 wing in a holding condition. The results

are compared with those of an incompressible parabolized NS solver known as the UNIWAKE code.

INTRODUCTION

Recently, the volume of civil air transport

using subsonic aircraft has increased at an alarm-

ing rate. With this increase in air traffic, sev-

eral hazardous effects have recently become of

primary concern. First, the landing and take-

off operations safety at busy airports of small
and medium size aircrafts when they encounter

high-intensity turbulent vortices emanating from

large aircraft. The trailing aircraft, under the in-

fluence of those vortex trails, could suffer high

rolling moments, loss of climb and structural

damages. The vortices persist up to a few miles

and several minutes before they decay.

Second, the adverse effects of the engine

exhaust on the stratosphere and troposphere

during cruise and holding conditions. A complex

flow regime develop behind those aircraft which

include the exhaust jet plume and the wake vor-

tices that entrain the exhaust plumes and even-

tually break-up producing exhaust-atmosphere

mixing region. Substantial adverse effects on

the stratosphere and tropsphere are expected

when the new fleet of High Speed Civil Trans-

port (HSCT) is introduced in the early years of

the next century. Recent research efforts are cur-

rently directed at understanding the adverse at-

mospheric effects of exhaust products from sub-

sonic and supersonic civil transport aircrafts.

These efforts include predicting the effects of ex-

haust plume on the dynamical, chemical and ra-

diative stratospheric processes. A recent NASA

report on these issues is published under the At-

mospheric Effects of Aviation Project (AEAP),
Ref. 1.

The origins of these hazardous effects are

the vortex-wake flows and the engine jet exhaust

plume and its interaction with the vortex-wake
flows. The vortex-wake flows include the tip-

vortex development and roll-up formation while
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Research Associate, Aerospace Engineering Department.
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4Senior Research Scientist, Associate Fellow AIAA.
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the jet exhaust plume include exhaust prod-

ucts, temperature field, and their fluid mechan-

ics. At some distance downstream, the vortex-

wake flows entrain the exhaust plume and later-

on the vortex-wake breaks up and dillutes the

exhaust plume in the stratosphere.

The literature shows some experimental
and computational investigations that model

and analyze the roll-up of a tip vortex, the wake-

vortex interaction, and the merging and decay, as

well as the hazardous effects of these phenomena

on trailing aircraft. Hallock and Eberle _ gave a

comprehensive review of the research on aircraft

wake vortices in the United States through the
mid-1970's.

Mathematical models and computational

methods were developed with inviscid analysis

3-s. Although an inviscid model cannot describe

the aging of the wake including its diffusion, it is

still capable of representing the wake shape and

its dynamics. The mathematical models used in
the above references were based on the use of

the point-vortex method to compute the motion

of a finite number of point vortices. The three-

dimensional inviscid model which is based on

the nonlinear vortex-lattice method, was used to

compute the interference flow between the wings
and the vortex-wake flows and to examine the

hazardous effects. _

Viscous modeling of trailing vortices was
studied in Ref. 8. Viscous interactions of vor-

tex wakes and the effects of background tur-

bulence, wind shear, and the ground on two-

dimensional vortex pairs with the Navier-Stokes

equations were presented in Refs. 9 and 10, and

the computer program is known as UNIWAKE.

The interaction, merging, and decay of vortices

in two- and three-dimensional spaces were stud-

ied in Refs. 11 and 12. A comprehensive review

on the subject of viscous vortical flows can be

found in a book by Ting and Klein. 13 To es-

timate the effects of density stratification, tur-

bulence, and Reynolds number on vortex wakes,

an approximate model was recently developed by

Greene. 14 Later, Greene and his coworkers is pre-
sented selected results for different aircraft vor-

tices, including a juncture vortex, a lifting-wing
vortex, and a wake vortex.

In recent papers by the present

authors 16'1_, the compressible Reynolds-

averaged NS equations were used to compute

and analyze vortex-wake flows of isolated and

interacting wings. The emphasis of the paper

was to study the effects of the near-wake vor-

tex flow on a small follower wing for two flow
interference cases. The flux limiter in the flow

solver was turned on and off to study it numer
ical diffusive effect. The solution obtained witt:

the full NS equations without a flux limiter gaw.'
the least numerically diffused tip-vortex core ir

comparison with those solutions for which a flu_:
limiter was used.

The multidisciplinary interaction of the.

aerodynamics and rigid-body dynamics betweer

a single tip vortex and a trailing wing was com-

putationally investigated by present authors is

The time-accurate solutions of the unstead)

Reynolds-averaged NS and Euler equations for

rigid wing rolling motion provided the growtt

rate of the vortex-core size and the rolling-

motion response of the wing. The Baldwin ant
Lomax turbulence model was used for this case

Very recently, research interest has also
been focused on the near-field and far-field

vortex-wake interaction with the engine exhaust

plume including vortex-wake breaks up for botl0

subsonic and high speed civil transport (HSCT_

aircraft. Computational fluid dynamics plays a

significant role in the prediction of the near-field
and far-field vortex-wake flows. Once this is ac-

complished, the next step is to include the ex-

haust plume products and chemical reactions.
and its interaction with the vortex-wake flows

including vortex wake break-up.

Recently, more advanced turbulence mod-

els became readily available for use with NS

solvers. In this paper, the algebraic Baldwin

and Lomax (BL) turbulence model 19, the one-

equation Spalart and AUmaras (SA) model 2°,

and the two-equation/c_ (KW) model developed

by Menter 21 are used to study the tip-vortex and

wake flows and the interaction of a tip vortex

with the temperature field of an exhaust plume

of a Boeing 727. Three key ingredients are con-

sidered for achieving accurate prediction of these

flows. These are the grid fineness, turbulence

model and computational efficiency. The re-

sults using different models are validated with

the available experimental data or the results ot
the UNIWAKE solver.

FORMULATIONS

Two sets of the NS equations are used for

this paper; a compressible set and an incom-



pressible set. The compressible set is solved

using a computer program known as FTNS3D
which is used in reference 18. This is the modi-

fied version of the well known CFL3D code. The

incompressible set is solved using a computer

program known as UNIWAKE which is used in
references 9 and 22.

The FTNS3D solver, described in de-

tail in reference 18, uses an upwind, flux-

difference splitting, finite-volume scheme solving

the unsteady, compressible, Reynolds-averaged

NS equations. For the exhaust plume/tip vor-

tex interaction case, the buoyancy body force

caused by temperature difference is added as a

source term without any approximation in the

NS equations. For all results in this paper,

upwind-biased spatial differencing is used for the

inviscid terms, and flux limiter is not used. The

viscous terms are differenced using second-order

accurate central differencing. The resulting dif-

ference equations are solved implicitly in time

with the use of the three-factor approximate fac-

torization scheme. The one- and two- equation

turbulence models are decoupled from the NS

equations and partial differential equation(s) for

turbulence model are solved sequentially at each

time step thereafter.

The UNIWAKE solver consists of four

computational modules: (1) Vortex Lattice: A

program to compute the lift circulation distribu-

tion on an aircraft wing based on the given aero-

dynamic parameters and wing planform shape.

(2) Betz: A program to generate the initial posi-

tion and strength of rolled-up trailing edge vor-

tices, given the lift circulation distribution. (3)

Wake: A program to merge and decay these

vortices downstream, interacting with engine jet

exhaust temperature and chemical products, by

solving the incompressible parabolized NS equa-

tions with fourth-order compact scheme in uni-

formly Cartesian system. The second deriva-
tives in the streamwise direction is neglected

in the governing equations. The effects of the

turbulence are included through the algebraic

Reynolds stress turbulence model. (4) Pinch: A

program to follow the inviscid line vortex fila-

ment interaction of these vortices to instability

and pinching, utilizing curved vortex elements.

Recently, some aspects of the compressibility and

density variation are taken into account in the
latest version of UNIWAKE. It should be noted

that the buoyancy body caused by temperature

difference is based on the Boussinesq approxima-

tions which are not valid for high temperature

differences. The detail of the governing equa-

tions and recent enhancements can be found in

Ref. 22.

BOUNDARY AND INITIAL

CONDITIONS

Boundary conditions are explicitly imple-

mented. They include inflow-outflow conditions

and solid boundary conditions. At the inflow

boundaries, the velocity profiles are either pre-

scribed or interpolated from the experimental

data, while the Riemann-invariant boundary-

type conditions are used. Temperature distri-

bution is specified for the engine exhaust plume

problem. At the outflow boundaries, pressure

profile either interpolated from the experimental

data or extrapolated from interior domain, while

the other variables are determined as part of the

solution. At the geometric plane of symmetry,

periodic conditions is set. For tip-vortex and

near-wake flow case, the tunnel walls are treated

as inviscid surface, except for the root wall.

The initial conditions correspond to the

uniform flow with no-slip and no-penetration
conditions are used.

RESULTS AND DISCUSSION

Near-Field Computation of the Tip-
Vortex

A rectangular wing with a NACA-0012 air-

foil section and a rounded wingtip is consid-

ered. The wing has an aspect ratio of 1.5 and
is mounted inside a wind tunnel at an angle of

attack of 10% The experimental work _3 was done

at the Fluid Mechanics Laboratory at NASA

Ames research center. The flow is turbulent with

a Reynolds number of 4.6 × 106, based on the

root-chord length of the wing (c), and the flow
Mach number is 0.3.

A C-O grid is used with 197 x 53 x 97 grid

points in the streamwise wraparound, normal,

and spanwise directions, respectively. A typi-

cal grid used in this study is shown in Fig. 1.

The computational domain of the grid is gen-

erated based on the dimension of the test sec-

tion and is nondimensionalized by the root-chord

length. The origin of the axis is located at the

quarter chord of the wing, the upper and lower

walls are x/c=0.3333 above and below the wing,

3



and the fax-side wall is zlc=l.0 from the mount-

ing wall. The inflow (x/c = -0.4) and outflow

(x/c = 1.42) conditions from the experimental

data are imposed as the boundary conditions.
The grid is clustered in the normal direction with

the spacing of 5 x 10 -s near the body and is also

clustered at the leading and trailing edges of the

wing. The mounting side and tip region of the
wing are also clustered to have better flowfield
resolution.

The steady-state solutions of the near-field

have been obtained using two-level of multi-grid
with BL, SA and KW turbulence models. The

typical convergent histories of the residual error
and lift coefficient for the SA model is shown in

Fig. 2. The residual error drops about two order

of magnitude and lift coefficient gets to within

0.5% of its final values in 1800 cycles. The fi-

nal lift coefficient is 0.52 at 2400 cycles. On the

Cray-YMP computer, a typical case takes about
13 hours.

Compaxison of surface-pressure coefficients

(Cp) with the experimental data at three

constant spanwise stations (left column) and

rounded tip regions (right column) with BL, SA

and KW models is shown in Fig. 4. The def-

inition of the 0 (theta) at the wing-tip region
is shown in Fig. 3. The results with BL and
SA model are better than those with KW model

on the wing surface. Obviously, there is mas-

sively separated region between x/c = 0.4 and

z/c = 0.7 at the wing-tip region. The KW model

poorly predicts the Cp particularly at the trail-

ing edge of the wing.

The side-by-side comparison of the cross-

flow total-pressure contours (Cpt) at two chord-

wise stations at z/c = 0.63 (on the wing) and

x/c = 1.19 (near wake) are shown in Figures 5

and 6. One can see the roll-up of the vortex

around the tip from the low surface to the upper

surface, which corresponds to the large pressure

gradient at the wing-tip region. Then, the vor-

tex moves upward and outboard as moving in the

downstream direction. The development of the

wing tip-vortex shows evidence of a good qual-

itative agreement with experimental data. The

location of the tip-vortex using BL and SA mod-

els is in fair agreement with that of the experi-
mental data while the results of the KW model

show the vortex is located more outboard and

closer to the surface. However, the results pre-

dicted by the KW model show better compaxi-

son with experimental data in the wake region at

the chord station x/c - 1.19. The vortex-wake

structure of the KW model show less diffusio:_

than that of BL and SA models. The close-up cf

the crossflow velocity magnitude contours (Vcl,

shown in Fig. 7, confirms that results from the

two-equation model predict tighter vortex core
than those of the BL and SA models in the near

wake. However, the tip-vortex core still shows

diffusion in comparison with the experimental

data due to the lack of grid resolution in th_

core region.

Far-Field Computation of Tip-

Vortex/Plume Interaction

For this case, a tip-vortex/plume interac-

tion of a Boeing ?2? wing is considered. The

study addresses the computation and analysi:_
of the vortex-wake interaction with the exhaust

plume for a long distance downstream of th,_

wing. The tip-vortex of the Boeing 727 wint_

is assumed to be fully rolled-up and the genera-

tion region is not included in the computation.

The initial velocity and pressure profiles axe gen-

erated using the vortex-lattice and Betz module_
of the UNIWAKE.

The tip-vortex flow is assumed fully turbu-

lent with a Reynolds number of i x 106, based or

the half semi-span of the wing (8), and the flo_

Mach number is 0.3. The tip-vortex and exhaus|

plume are located at y/8 = 0.76, z/8 = 0.0_

and y/8 = 0.4, z/8 -- -0.1, respectively. Th_

peak temperature at the center of the engine i_

two times the ambient temperature. The inflo_

crossflow velocity (Vc), and temperature distri-

butions (T) at x/8 = 0.0 are shown in Fig. 8.

The NS equations axe used to comput_

the development of this vortex and its inter-

action with the plume for a long distance up

to z/8 = 110. The computations of FTNS3D

solver are carried out using an overlapping zonaJ
method and the schematic sketch is shown in

Fig. 9. For each stage of computation, a fine

grid zone is used. The downstream distance (a)

and the overlapping or buffer zone (b) should be
chosen such that the downstream effects can be

minimized. In this study, the following values are

chosen; a/8=8.0, b/s=2.0, and Xmax/s=110.0

(equivalent to one mile behind the inflow plane).

A rectangular grid of 201 x 41 x 51 grid points

in x, y, and z directions, respectively, are used.

The computations are caxried out start-



ing from the inflow station of z/s = 0.0 up to

x/s = 110.0 using the FTNS3D using KW model
and UNIWAKE solvers on the same grid resolu-

tion in the crossflow plane. The results of the

crossflow T and Vc contours at selected chord-

wise stations with FTNS3D (left column) and

UNIWAKE (right column) solvers are shown in

Figures 10-12. All the results are plotted in ref-

erence to the origin and the corresponding axes
at the inflow section. The results show the evolu-

tion of the tip-vortex interaction with the plume
as it is advanced in the downstream. The ve-

locity field of the tip vortex induces the exhaust

plume movement upward and wrapping around

the tip-vortex while cooling it down.
The results of the FTNS3D code show that

tip-vortex center first moves upward and inward,
and then descends as it advances in the down-

stream direction. On the other hand, the UNI-

WKAE results show the tip-vortex center con-

tinuously descends and stays almost at the same

lateral location of y/s = 0.76. Since the UNI-

WAKE code is a space-marching NS solver, the

step size in the streamwise direction is deter-

mined based on extrapolated changes in the flow
variables at each station. The code also has a

dynamic upwash adjustment that seeks to retain

the perceived vortical mean location at the po-

sition of z/s = 0.0. The upwash overcomes the
inherent downwash of the typical vortical wake

structure. The discrepancies between the two

solvers are due to the dynamic upwash adjust-

ment of the UNIWAKE code and the fully three-

dimensional computations of the FTNS3D code.

The results with the UNIWAKE solver show

more diffusion as compared with the FTNS3D re-

sults. One of the numerical parameters known as

the turbulent macroscale (A) in the UNIWAKE

code has to be adjusted from the default values

of 0.2 to 0.04 in order to obtain adequate less-

diffused results. The larger values of A (results

are not shown here) show even more diffusive ef-

fect as compared with the FTNS3D results.

CONCLUDING REMARKS

The computational solution of the un-

steady, compressible, Reynolds-averaged Navier-

Stokes equations is used to predict the near- and
far-field vortex-wake turbulent flows. Three dif-

ferent turbulent models have been used with the

NS equations which include the Baldwin and Lo-

max model, Spalart and Allmaras model and

KW model of Menter. For the near-field vortex-

wake application, the focus is directed on the

development and roll-up of the tip vortex for

a subsonic wing while for the far-field vortex-

wake application, the focus is directed on the

interaction of a tip-vortex of a typical 727 Boe-

ing wing with the temperature field of an engine
exhaust plume. The results of the first appli-

cation have been compared with the available

experimental data. The comparison shows that

the computed results with the BL and SA mod-

els are in good agreement with the experimen-
tal data than those results with the KW model.-

The results of the second application are com-

pared with those of the UNIWAKE code. The
UNIWAKE results show different motion of the

vortex center along with the exhaust plume as

it advances downstream, than that of the full

Navier-Stokes code. The difference is attributed

to the approximations associated with the UNI-
WAKE code.
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Figure 1: Typical C-O mesh of AR = 1.5 rectangular wing.
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ABSTRACT

The tail buffet problem is a multi-disciplinary

problem which is solved using three sets of equa-
tions. The first set is the unsteady, compress-

ible, full Navier-Stokes equations which are used

for obtaining the flow-field vector and the aero-

dynamic loads. The second set is the aeroeiastic

equations which are used for obtaining the bend-

ing and torsional deflections of the tail. The third
set is the grid-displacement equations which are

used for updating the grid coordinates due to the

tail deflections. For the computational applica-

tions a sharp-edged cropped delta wing of aspect

ratio 1.5 and a swept back vertical tail of aspect

ratio 1.4 placed in the plane of geometric symme-
try behind the wing are considered. The configu-

ration is pitched at angles of attack of 20 ° and 28 °

which produce vortex breakdown flow of the delta

wing primary vortices for the transonic regime at
a Mach number of 0.85. The results show the ef-

fects of the angle of attack and vortex breakdown
on the uncoupled bending-torsional responses.

INTRODUCTION

The ability of modern fighter aircraft to fly and

maneuver at high angles of attack and at high

loading conditions is of prime importance. This

capability is achieved, for example in the F/A-18

fighter, through the combination of the leading-

edge extension (LEX) with a delta wing and the
use of vertical tails. The LEX maintains lift at

high angles of attack by generating a pair of vor-
tices that trail aft over the top of the aircraft. The
vortex entrains air over the vertical tails to main-

tain stability of the aircraft. This combination of

LEX, delta wing and vertical tails leads to the air-

craft excellent high angle of attack performance.

However, at some flight conditions, the vortices

emanating from the highly-swept LEX of the delta

wing breakdown before reaching the vertical tails

which get bathed in a wake of unsteady highly-

turbulent, swirling flow. The vortex-breakdown
flow produces unsteady, unbalanced loads on the

vertical tails which in turn produce severe buffet
on the tails and has led to their premature fatigue

failure.

Experimental investigation of the vertical tail
buffet of the F/A-18 models have been conducted

by several investigators such as Sellers at all., Er-
ickson at ala., Wentz 3 and Lee and Brown 4. These

experiments showed that the vortex produced by
the LEX of the wing breaks down ahead of the

vertical tails at angles of attack of 25 ° and higher

and the breakdown flow produced unsteady loads
on the vertical tails. Rao, Puram and Shah s

proposed two aerodynamic concepts for alleviat-

ing high-alpha tail buffet characteristics of the

twin tail fighter configurations. Cole, Moss and

Doggett 6 tested a rigid, 1/6 size, full-span model
of an F-18 airplane that was fitted with flexible
vertical tails of two different stiffness. Vertical-

tail buffet response results were obtained over

the range of angle of attack from -10 ° to +40 °,
and over the range of Mach numbers from 0.3 to
0.95. Their results indicated that the buffet re-

sponse occurs in the first bending mode, increases

with increasing dynamic pressure and is larger at
M = 0.3 than that at a higher Mach number.

An extensive experimental investigation has

been conducted to study vortex-fin interaction

*Profeuor, Eminent Scholar and Department Chairman, Associate Fellow AIAA.

tPh.D. Student and Research AuiBtant, Member AIAA.
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on a 76° sharp-edged delta wing with vertical

twin-finconfigurationby Washburn, Jenkins and

Ferman v. The verticaltailswere placed at nine

locationsbehind the wing. The experimentaldata

showed that the aerodynamic loadsare more sen-

sitiveto the chordwisetaillocationthan itsspan-
wiselocation.As the tailswere moved toward the

vortexcore,the buffetingresponseand excitation

were reduced. Although the taillocationdid not

affectthe vortexcore trajectories,itaffectedthe

locationofvortex-corebreakdown. Moreover,the

investigationshowed thatthe presenceofaflexible

tail can affect the unsteady pressures on the rigid
tail on the opposite side of the model. In a recent

study by Bean and Lee s tests were performed on
a rigid 6% scale F/A-18 in a trisonic blowdown

wind tunnel over a range of angle of attack and
Mach number. The flight data was reduced to a

non-dimensional buffet excitation parameter, for

each primary mode. It was found that buffeting

in the torsional mode occurred at a lower angle
of attack and at larger levels compared to the
fundamental bending mode.

Kandil, Kandil and Massey9 presented the

firstsuccessfulcomputational simulationof the

verticaltailbuffetusing a deltawing-verticaltail

configuration.A 76° shaxp-edgeddeltawing has

been used along with a singlerectangularverti-

caltailwhich was placed aftthe wing along the

plane of geometric symmetry. The tailwas al-

lowed to oscillatein bending modes. The flow

conditionsand wing angleofattackhave been se-

lectedto produce an unsteady vortex-breakdown

flow.Unsteady vortexbreakdown ofleading-edge

vortexcoreswas captured,and unsteady pressure

forceswere obtained on the tail.These computa-

tionalresultsareinfullqualitativeagreement with

the experimentaldata of Washburn, Jenkinsand

Ferman r. An alternativesimple model for simu-

lationof the buffetproblem was used by Kandil

and Flanagan1° and Flanagan11. In thismodel,

a configuredcircularduct was used to produce

vortex-breakdownflowthrough the interactionof

a supersonicswirlingflowand a shock at the inlet

ofthe duct. Downstream ofthe vortex-breakdown

flowa cantileveredplatewas placed.The problem

was solvedforthe quasi-axisymmetriccase.

Kandil, Kandil and Massey 12 extended the
technique used in Ref. 9 to allow the vertical tail

to oscillate in both bending and torsional modes.

The total deflections and the frequencies of de-
flections and loads of the coupled bending-torsion

case were found to be one order of magnitude
higher than those of the bending case only. Also,

it has been shown that the tail oscillations change

the vortex breakdown locations and the unsteady
aerodynamic loads on the wing and tail.

Kandil,Massey and Sheta13studiedthe eff(_cts

of couplingand uncoupling the bending and tor-

sionalmodes fora long computation_ time, _Lnd

the flowReynolds number on the buffetrespoI_se.

In this paper, we consider the vortex break-

down flow in the transonic regime, Moo = 0.85,

and a delta wing-swept back tail configuration.
Next, we address the effect of the angle of attack

(20 ° and 28 ° ) on the deflection response of the
vertical tall and the vortex breakdown flow.

FORMULATION

The formulation of the problem consists of three

sets of governing equations along with certain ini-
tial and boundary conditions. The first set is the

unsteady, compressible, full Navier-Stokes equa-
tions. The second set consists of the aeroelastic

equations for bending and torsional modes. The

third set consists of equations for deforming the
grid according to the tail deflections. The litera-

ture shows various methods to move the grid. The

simplest method uses simple interpolation func-

tions such that the grid points adjacent to lhe
aeroelastic surface move with the surface while lhe

grid points at the computational-region boundary

do not move 14. The unsteady, linearized, Navier-
displacement equations have also been used suc-

cessfuUy by Kandil at a]. to move the g.dd
dynamically 1s-is. In the present paper, we use

simple grid interpolation to move the grid. Next,

the governing equations for each set are given

Fluid-Flow Equations:

The conservative form of the dimensionless, un-

steady, compressible, full Navier-Stokes equations

in terms of time-dependent, body-conformed co-
ordinates _1, _2 and _3 is given by

"_ O_'a a_" = 0;m = i-3,8 = 1-3 (1)



where

C_ = _"(zl, x_,z3, t) (2)
1

= -_[p, pul,pu2,pu3, pe], (3)

/_m and (J_), are the _"-inviscid flux and

_S-viscousand heat conductionflux,respectively.

Detailsofthesefluxesare givenin Ref. 9.

Aeroelastic Equations:

The dimensionless, iinearized governing equations

for the coupled bending and torsional vibrations
of a vertical tail that is treated as a cantilevered

beam are considered. The tail bending and tor-

sional deflections occur about an elastic axis that

is displaced from the inertial axis. These equa-

tions for the bending deflection, w, and the twist

angle, 0, are given by

°2[o%-_EI(')__ 2(_'0 +m(_)_-_-(z,0

020
+mCz)z,(z)-_(z,O = N(z,O (4)
O
-- - ,-(.)=o'_(z,_)

020
-h(z)_-(z, t) = -Mr(z, t) (5)

where z is the vertical distance from the fixed

support along the tail length, It, EI and GJ the

bending and torsional stiffness of the tail section,

m the mass per unit length, Is the mass-moment

of inertia per unit length about the elastic axis, xo
the distance between the elastic axis and inertia

axis, N the normal force per unit length and Mt

the twisting moment per unit length. The char-

acteristic parameters for the dimensionless equa-

tions are c*, a_o, P_o and c*/a_o for the length,

speed, density and time; where c° is the delta

wing root-chord length, a* the freestream speed

of sound and P_o the freestream air density. The

geometrical and natural boundary conditions on
w and 0 are given by

_2t/Y

aw t) -E_z2(t,, t)_(o,0 = -F;( o, =

O 02w 1
= -_z[EI(lt)'_z2(,,t)]

00

0(0,t) = _(t,,t) = 0

=0 (o)

(7)

The solution of Eqs. (4) and (5) are given by

_(_, t) = r, _,(_)q_(t)
i=1

(8)

M

O(z,t) = _ Cj(z)qj(t) (9)

j=]+]

where ¢i and Cj are comparison functions sat-
isfying the free-vibration modes of bending and

torsion, respectively, and qi and qj are generalized

coordinates for bending and torsion, respectively.

In this paper, the number of bending modes, I,
is six and the number of torsion modes, M - f,

is also six. Substituting Eqs. (8) and (9) into

Eqs. (4) and (5) and using the Gaierkin method
along with integration by parts and the boundary

conditions, Eqs (6) and (7), we get the following

equation for the generalized coordinates qi and qj
in matrix form:

q,)
= N2 ;J = ]+ 1, .... ,M

where

Mll m

MI2 --

M22 =
fl°' Io¢,¢jdzmCr¢idz}
mxoCrgpjdz

M21 = fto'£,
(11)

Kll "- f; EI_dz

K22 = f_ GJ d= d= dZ
(12)

IV1 = .[Zo'¢,Ndz

N2 = fiO' ¢,Mtdz ! (13)

Similar aeroelastic equations were developed

for sonic analysis of wing flutter by Strgana£ lr,

and Strganac, Mook and Mitchum is. The nu-

merical integration of Eqs. (11-13) is obtained

using the trapezoidal method with 125 points to

improve the accura£y of integrations. The so-
lution of Eq. (10), for qi;i - 1,2, .... ,i, and

qj;j = ] + 1, .... , M, is obtained using the Runge-
Kutta scheme. Next, w, and 0 are obtained from

Eqs. (8) and (9).



Grid Displacement Equations:

Once w and 8 are obtained at the n + 1 time step,

the new grid coordinates are obtained using simple
interpolation equations. In these equations, the

n+l
tail bending displacement, wij,k , and the tail dis-

placement through the torsion angle, 8i"+lj,kare m-"
terpolated through a cosine function. Ti_ese equa-

tions for the y and z coordinates to the right side

of the tail and a head of its elastic axis are given
by

_/n+l n [4,,n+1
ij,k = Yij,k + t_id,k + (X - z_j,k ) tan an+11" i,j,k J

cos _,---y---2] (14/

i,j,_ ij,k Az ° - AzO) 2 (Aw-+l)a

cos Z

where z9.+.1 and - n+l,,j,z Yid,k are the z and y coordi-

nates of a grid point at the n + 1 time step, z_,j,k
is the original z coordinate of a tail grid point

and Az_j,t = z_'d,k - z_'d,k_l, y is the maximum y
coordinate from the tail-surface grid point to the

corresponding point at the right boundary of the
computational domain, Z is the maximum z coor-

dinate from the tail root to the upper boundary
of the computational domain and X is the x co-

ordinate of the tail elastic axis. These equations

result in displacing a grid point on the tail by the

total deflection due to bending and torsion and

keeping a grid point at the boundary fixed. Sim-

ilar equations are used for the other part of the
computational domain.

Boundary and Initial Conditions:

Boundary conditions consists of conditions for

the fluid flow and conditions for the aeroelastic

bending and torsional deflections of the tail. For

the fluid flow, the Riemann-invariant boundary
conditions are enforced at the inflow and outflow

boundaries of the computational domain. At the

plane of geometric symmetry, periodic boundary

conditions is specified with the exception of grid
points on the tail. On the wing surface, the no-
slip and no-penetration conditions are enforced

and _ = 0. On the tail surface, the no-slip and

no-penetration conditions for the relative velocity

components are enforced (points on the tail sur-
face are moving). The normal pressure gradient is
no longer equal to zero due to the acceleration of

the grid points on the tail surface. This equat _.on

becomes _ -- -pft.h, where fit is the accelera-
tion of a point on the tail and h is the unit nor_ al.

Initial conditions consist of conditions for l he
fluid flow and conditions for the aeroelastic ,te-

flections of the tail. For the fluid flow, the ini-

tial conditions correspond to the freestream con-

ditions with no-slip and no-penetration conditions
on the wing and taft. For the aeroelastic deflec-

tions of the tail, the initial conditions for any point

on the tail are that the displacement and velocity

are zero, w(z,O) = O, _(z,O) = O, O(z,O) = 0

and _(z,O)= O.

METHOD OF SOLUTION

The first step is to solve for the fluid flow problem

using the vortex-breakdown conditions and keep-

ing the tail as a rigid beam. Navier-Stokes equa-
tions are solved using the implicit, flux-difference

_litting finite-volume scheme. The grid sp_d
is set equal to zero in this step. This step pro-

vides the flow field solution along with the pres-
sure difference across the tail. The pressure dif-
ference is used to generate the normal force and

twisting moment per unit length of the tail. Next,
the aeroelastic equations are used to obtain the

tail deflections, wid.k and Oid,k. The grid displace-

ment equations are then used to compute the new
grid coordinates. The metric coefficient of the c_-

ordinate Jacobian matrix are updated as well as

the grid speed, .0._. This computational cycle is
repeated every time step.

COMPUTATIONAL APPLICATIONS

Delta Wing-Vertical Tail Configuration:

The delta wing-swept back vertical tail configu-

ration consists of a 65° swept back, sharp-edged,

cropped delta wing of aspect ratio 1.5 and crop-
ping ratio (tip length/root-chord length) 0.15, and

a 53.5 ° swept-back vertical tail of aspect ratio 1.4,

which is placed in the plane of geometric symm_
try. The tail has a span of 0.222 and a root chord

of c¢ = 0.2527 with taper ratio of 0.23. The lea_i-

ing edge of the tail root is located at .06 down-

stream the wing trailing edge. The lower edge
of the tail is along the wing axis and the tail is



dampedat that edge. The freestream Mach num-
ber is 0.85 and the Reynolds number is 3.23 mil-

lion. The wing angle of attack has been chosen
as 20 ° and 28 °. An O-H grid of 65X43X95 grid

points in the wrap-around, normal and axial di-
rections, respectively, is used for the solution of

the fluid-flow part of the problem. The grid lines

in the wake region has been modified to accommo-
date the tall topology. Figure 1 shows a typical

grid and a blow-up of the wing-tail configuration.

Initial Conditions (Fluid-Flow Problem),

a = 200:

Keeping the tail rigid, the unsteady, compress-

ible, full Navier-Stokes equations are integrated
time accurately using the implicit, flux-difference

splitting scheme of Roe to a dimensionless time,

t = 10. Figure 2 shows a three-dimensional view
and a top view for the wing-rigid tail configura-
tion. The vortex breakdown of the leading-edge

vortex core and the stagnation pressure distri-

bution are shown in the figure. The cross flow

beneath the primary vortex reaches supersonic

speeds and a ray shock develops beneath the pri-
mary vortex. The leading-edge vortex core passes

through another transverse shock known as a ter-
minating shock at x - 0.83 which causes the vor-
tex core to breakdown at x - 0.85.

Figure 3 shows the static pressure contours
on the wing surface and symmetry plane. A sub-

stantial supersonic pocket which is bounded by
the terminating shock and the ray shocks (shocks

beneath the primary vortex cores) is observed on

the wing plane. Figure 4 shows the Mach con-
tours and streamlines on a vertical ray plane (ray

D) which passes through the vortex breakdown.
The streamlines conclusively show a two-bubble
cell vortex breakdown. The Mach contours show

that the front surface of the vortex breakdown

bubbles is enclosed by a hemispherical shape-like

shock surface. Figure 5 shows the static-pressure

variation along ray lines from the wing vertex.
These curves show the spanwise locations of sev-

eral points on the foot-print line of the terminat-

ing shock. The terminating shock is clearly seen

to run in the spanwise direction from the plane of

symmetry to the wing leading edge.

The solution at the present time step is taken
as the initial conditions for the next case of the

aeroelastic tail response.

Uncoupled Bending-Torsion Tail

Response, a - 20°:

The tail is treated as a swept back beam with

thickness d = 0.005. The tail material dimen-

sionless modulii of elasticity and rigidity, E and

G are 1.8X10 s and 0.692X105, respectively. The

mass per unit length of the tail varies linearly
from the tail root, mr -- 0.033, to the tail tip,

mt -- 0.0076 and the mass-moment of inertia

per unit length varies linearly from the tail root,
I0_ = 1.75X10-*, to the tail tip, Iet= 2.1XlO -6.

For the coupled bending-torsion case, the elastic
axis is assumed to exist upstream the inertia axis
with a distance of xe = -0.02. For the uncoupled

bending-torsion case, xo = 0.0.

Figures 6-8 show the results of the uncoupled

bending-torsion responses of the tail. Figure 6
shows four pairs of responses. The first pair is
for the variation of the bending deflection, w,

and torsional deflection, e, along the tail height

z every 2000 time step. The bending and torsion

responses are mainly of the first-mode shape type.
The second pair of responses show the variation of

the normal force and twisting moment along the

tail height z every 2000 time steps. The third and

fourth pairs show the bending deflection, normal
force, torsional deflection and twisting moment

variation at the tail tip and its midpoint versus

the number of time steps (it = 20,000 or t = 20

starting from the initial condition). It is observed

that the frequency of the normal force and the

twisting moment are almost the same as that of

the bending deflection and the torsional deflec-
tion, respectively. Figure 7 shows the combined

response, Wna, of the bending and torsional de-
flections along the tail height every 2000 time

steps. Figure 8 shows a three-dimensional view

and a top view of the wing-deformed tail config-

uration at it = 20,000. Comparing this figure

with Fig. 2 (Initial condition with rigid tail), the

terminating shock moves upstream to x = 0.5 and
becomes weaker and smeared. The vortex break-

down occurs immediately after the terminating
shock. Another shock is observed downstream of

the original terminating shock and is accompa-

nied by another breakdown. The breakdown flow

is slightly asymmetric. This conclusively shows

the substantial upstream aerodynamic effects of

the tail bending and torsional deflections.



Initial Conditions (Fluid-Flow Problem),
= 280:

Keeping the tail rigid, the angle of attack is in-

creased to 28 ° . The other flow conditions are kept
the same as those of a = 20 °. Figure 9 shows a
three-dimensiona] view and a top view of the vor-

tex breakdown of the leading-edge vortex cores
and the stagnation pressure contours. The vortex

breakdown flow moves upstream covering almost

all of the wing planform. Figure 10 shows the

Mach contours on a constant K plane near the

wing surface and on the plane of symmetry. The

supersonic pocket on the upper wing surface ex-
panded in the spanwise direction to cover all of the

wing planform, and part of the transverse termi-

nating shock moved downstream ahead of the ver-

tica] tail location. Figure 11 shows the variation of

static pressures along ray planes originating from
the wing planform vertex. It is observed that sev-

era] transverse shocks exist; one near the wing ver-

tex at x/c - 0.2, a second one at x/c -- 0.9 and a

third one ahead of the tail location at x/c = 1.06.

Uncoupled Bending-Torsion Tail

Response, a = 28°:

Figures 12-15 show the results of this case. Figure
12 shows the same sequence of results as those of

Fig. 6. Comparing the results of Fig. 12 with

those of Fig. 6, it is observed that the bending
and torsional deflections of Fig. 12 are 4-5 times

as those of Fig. 6. Moreover, the frequencies of
the bending and torsional deflections and loads of

Fig. 12 are lower than those of Fig. 6. The aero-

dynamic damping of the case of Fig. 6 is higher
than that of the case of Fig. 12. The net deflec-

tion of Fig. 13 is 4 times higher than that of Fig.
7. Figure 14 shows a three-dimensional view of

the vortex breakdown of the leading-edge vortex

cores and the stagnation pressure at it - 20,000.

It is observed that the leading critical points of

the vortex breakdown near the wing vertex are
asymmetric. Figure 15 shows the Mach contours

on a constant K plane near the wing surface and
on the plane of symmetry. The Mach contours on

the wing surface show strong asymmetry with one
side having a subsonic flow and the other side hav-

ing a supersonic flow. It is observed that a shock

near the plane of symmetry and originating from
the wing vertex exists.

CONCLUDING REMARKS

The tail buffet problem due to the unsteady aero-
dynamic loads induced by the vortex-breakdown

flow of the wing leading-edge vortices has been

simulated computationally and efficiently usiv.g a

delta wing-swept back vertical tail configuration.

The wing aspect ratio and flow conditions (tran-
sonic regime) have been carefully selected in o_der

to produce unsteady vortex-breakdown flow. '{'he

solution has demonstrated the development of the

tail buffet due to the unsteady loads produced by

the transonic vortex-breakdown flow. The prob-
lem is a multidiscipllnary problem which requires
three sets of equations to obtain its solution.

In the present paper, the CFD solver is the

implicit, upwind, Roe flux-difference splitting
scheme.

The focus of this paper is to study the 1cur-

let response in transonic flow at different angles
of attack. It is conclusively found that the _ail

oscillations have a substantial upstream effect on

the vortex breakdown of the leading-edge vor:ex
cores, although a supersonic pocket exists on r,he

wing upper surface. By increasing the angle of
attack from 20 ° to 280 , the vortex breakdown

flow becomes stronger and the corresponding un-
steady normal forces and torsional moments on

the tail become larger resulting into substantially
higher deflections with lower frequencies. U_ke
the results obtained in Ref. 13 for subsonic vorlex

breakdown flows and a delta wing-rectangular ver-
tical tail configuration, the aerodynamic loads and

the deflections in the present case never reached

periodic response and their loads were one order of
magnitude lower than those of Ref. 13. These re-

suits are in a qualitative agreement with the cc.n-

clusion reached by Cole, Moss and Doggett of Ref.
6; That the buffet deflections become larger as the
Mach number is decreased.
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Fig. An O-H grid of 65X43X95 grid points in the wrap-around, normal

and axial directions and a blow-up of the wing-tail configuration.
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Fig. 2 Three-dimensional view and a top view of the wing-tail configuration

for the initial conditions, a = 20 °, At = 0.001, it = 10,000.
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Fig. 7

Leading Edge Net Deflection History
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Net deflection of the tail leading edge for the uncoupled bending-torsion

case, a = 20 °, At = 0.001, it = 10,000 -- 30,000.

Fig. 8
Three-dimensional view and a top view of the wing-tail configuration

for the uncoupled bending-torsion case, a = 20 °, At = 0.001, it = 20, 000.
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Fig. 9 Three-dimensional view and a top view of the wing-tail configuration

for the initial conditions, a = 28 °, _t = 0.001, it = 10,000.
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Fig. 10 Mach contours on a constant K plane near the wing surface and on the

plane of symmetry, a = 28 °, _t = 0.001, it -- 10, 000.
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Fig. 11 Ray planes on the wing plaaform and surface pressure variation along
these planes, a -- 28 °, At -- 0.001, it -- 10,000.
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Three-dimensional view and a top view of the wing-tail configuration

for the uncoupled bending-torsion case, ct = 28 °, At = 0.001, it = 20,000.
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Ma_h contours on a constant K plane near the wing surface and on the

plane of symmetry, a = 28 °, At = 0.001, it = 20,000.
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